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An arithmetic criterion for the classi®cation of crystal structures with n points in

their unit cell (`n-lattices') was described by Pitteri & Zanzotto [Acta Cryst.

(1998), A54 359±373]. In this paper, a systematic analysis of monoatomic

2-lattices is given, showing that there exist 29 distinct arithmetic types of these

structures, some of which share the same space groups. As all monoatomic

2-lattices are constituted by a single crystallographic orbit, these structures are

also classi®ed by the established criterion of Fischer & Koch [Koch & Fischer

(1975). Acta Cryst. A31, 88±95; Fischer & Koch (1996). International Tables for

Crystallography, Vol. A. Dordrecht: Kluwer] involving the lattice complexes.

The two classi®cations are found to coincide in this simplest case. By

examination of some examples taken from the allotropes of the elements, it is

also shown how the arithmetic criterion can be used to classify more complex

crystals, such as monoatomic 4-lattices. This gives a group-theoretical frame-

work for distinguishing structures when the space-group classi®cation fails to do

so, and Fischer & Koch's criterion, as presented in the literature, may not be

immediately applied.

1. Introduction

1.1. Background

The problems posed by materials science, especially in the

new ®eld of active crystalline materials, require an ever more

detailed modeling of the behavior of crystalline solids, with

the associated phenomena of twinning and microstructure

formation [see for instance Ball & James (1992, 2001), Luskin

(1996), MuÈ eller (1998), James (1999), James & Hane (2000),

Pitteri & Zanzotto (2001) for reviews about recent activity on

the modeling of such phenomena based on non-linear ther-

moelasticity theory].

Both in the theoretical and in the experimental work on

crystalline materials, one must consider, besides simple

lattices, also `multilattices' [called `ideal crystals' by Engel

(1986), or `multiregular point systems' by Dolbilin et al.

(1998)]. These structures are triply periodic subsets of the

tridimensional af®ne space constituted by unions of a ®nite

number of translates of a given simple lattice, and can describe

in full detail the atomic arrangements in crystalline materials

with more than one atom in their translational unit cell. A

multilattice is called an n-lattice when it is necessary to specify

that n atoms are present in its unit cell; in this case, the

multilattice is a union of n congruent interpenetrating simple

lattices.

As pointed out by Ericksen (1970, 1977, 1980), a central

question in the modeling of crystal mechanics from the

standpoint of non-linear elasticity is writing an appropriate

constitutive equation for the energy of the crystalline

substance. To this end, and in order to determine the correct

location of the energy wells and to keep a proper track of the

symmetry changes occurring in lattices that undergo solid-

state phase transformations, the `arithmetic symmetry' of

deformable crystals should be investigated.

For simple lattices (1-lattices), the notion of arithmetic

symmetry is classical, going back to the earlier decades of this

century; according to this point of view, the classi®cation of

1-lattice structures is based on the conjugacy properties of the

representations of their symmetry groups as subgroups of the

arithmetic group GL�3;Z�.1 The main reason for formulating

the arithmetic criterion for simple-lattice symmetry is that it

describes these structures in a more precise way than the

orthogonal framework, as it determines also all the inequi-

valent centerings of 1-lattices, subdividing the latter into the

classical 14 Bravais types.2 In the same way, the group

GL�2;Z� is the basis for studying the arithmetic symmetry of

planar simple lattices (1-nets), which are subdivided into ®ve

arithmetic types, and so on for any dimensions; see for

instance Schwarzenberger (1972), Engel (1986), Sternberg

(1994), Michel (1995).

Only recently an arithmetic framework has been proposed

for investigating the symmetry of multilattices: see Pitteri &

Zanzotto (1998, 2001). This notion originated from earlier

work on the invariance for the energy functions of non-

linearly elastic crystalline materials by Ericksen (1977), Parry

(1978) and Pitteri (1985).

1 GL�3;Z� denotes the group of invertible 3 � 3 matrices with integral entries
(as usual, in this paper we denote by Z and R the sets of integral and real
numbers, respectively).
2 Pitteri & Zanzotto (1996) discuss the relation between the arithmetic
classi®cation of simple lattices and the earlier criterion actually stated by
Bravais (1850).



The arithmetic criterion for multilattices extends in a

natural way the classical ideas mentioned above regarding

simple lattices: as for the latter, the classi®cation is based on

the conjugacy properties of the symmetry groups of multi-

lattices within suitable arithmetic groups.3 Such groups

generalize the role played by GL�3;Z� for simple lattices, as

recalled above. This method allows one to produce a detailed

classi®cation of crystal structures: given n � 1, one can

establish all the essentially distinct structures with n points in

their unit cell. For n> 1, the arithmetic classi®cation is ®ner

than the space-group classi®cation [see Proposition 5 in Pitteri

& Zanzotto (1998)]. One can therefore also identify all the

distinct n-lattice structures that share the same space group.4

We notice that the literature seems lacking on this point. Well

known empirical classi®cations of crystal structures, such as

the Strukturberichte (1913±1940), give structure lists, for

instance under the heading of their space group, without any

criterion to help identify the possibilities that are theoretically

available. This lack is even more evident in structure lists given

under the heading of the `Pearson symbols' (see Villars &

Calvert, 1991); the latter give a coarse indication of the feature

of a crystal by indicating its Bravais type and the number of

atoms in its conventional cell. The arithmetic criterion is the

theoretical tool that allows one to identify all the distinct

structures falling under the heading of each Pearson symbol.

1.2. Results of this paper

The study of the arithmetic symmetry of multilattices is in

its early stages [see the aforementioned literature, and also

Adeleke (1999) and Ericksen (1999)]. In Fadda & Zanzotto

(2000), we have made a ®rst systematic investigation of the

simplest non-trivial case, showing that the monoatomic 2-nets

(i.e. monoatomic 2-lattices in two dimensions) are subdivided

into ®ve distinct arithmetic types. In this paper, we illustrate

the three-dimensional (3D) case.

(a) We show how the systematic analysis of the arithmetic

symmetry of multilattices can be performed for monoatomic

2-lattices, of which we give the complete classi®cation into

distinct arithmetic types [see Table 1 as a summary; see Table 2

in Fadda & Zanzotto (2001) for a representation of their

periodic cells]. This involves establishing all the conjugacy

classes of the symmetry groups of 2-lattices within the arith-

metic group ÿ3;1 de®ned in formulae (15)±(16) below [we

recall that the role of ÿ3;1 for 2-lattices is completely analo-

gous to that of GL�3;Z� for 1-lattices]. To reach this goal, we

indicate in x3 a procedure that allows us to minimize the

required computations by making suitable use of the infor-

mation given in International Tables for Crystallography

(1996).5 We ®nd that there exist 29 distinct arithmetic types of

monoatomic 2-lattices in 3D. As for the general case, also here

we obtain a ®ner classi®cation than the one based on space-

group symmetry, as there are cases of distinct 2-lattice types

that share their space group (see Table 1).6 The 29 distinct

types include all the 2-lattice structures reported in the

literature for the elemental crystals; among these are the ®ve

Strukturberichte that are monoatomic 2-lattices plus a recently

proposed 2-lattice structure of Si and also two other 2-lattice

structures for which an identi®cation in the Strukturberichte is

not available (see Table 1 and x4 for more details and refer-

ences). The arithmetic method gives to the empirical classi®-

cations of crystalline structures and to the search of new ones

a group-theoretical basis.7

(b) We also discuss in x5 some examples of monoatomic

4-lattices, taken from nature, in order to show how the arith-

metic criterion operates with more complex structures.

1.3. Relation to the classification of crystallographic orbits by
Fischer & Koch (Koch & Fischer, 1975; Fischer & Koch, 1996)

We recall that any monoatomic 2-lattice is a `regular point

system' in the 3D af®ne space, i.e. it is a set of points consti-

tuted by a single crystallographic orbit.8

Now, there exists in the literature a well established

criterion for the classi®cation of crystallographic orbits,

proposed by Fischer & Koch (Koch & Fischer, 1975; Fischer &

Koch, 1996); see also Hermann (1935) and Engel (1986). This

criterion considers two orbits as equivalent when their site-

symmetry groups are conjugate in the af®ne normalizer of the
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3 These arithmetic groups arise from the analysis of the general indeterminacy
in the choice of the multilattice descriptors (see Pitteri, 1985). In the case of
deformable simple lattices, the descriptors are the vectors forming the lattice
basis, which is determined up to a transformation in GL�3;Z�, whence the role
of the latter group in the study of simple-lattice symmetry. For multilattices,
one also considers the shift vectors giving the positions of the further simple
lattices constituting the multilattice (or, equivalently, of the further points in
the unit cell), so that more general arithmetic groups must be considered [see
for instance formulae (16) or (32) below]. The arithmetic criterion presented
by Pitteri & Zanzotto (1998) can be generalized in a straightforward way also
to classify `polyatomic' crystal structures constituted by atoms belonging to a
®nite number of distinct atomic species. Here, we con®ne our attention to
`monoatomic' crystals, whose points are all physically indistinguishable.
4 This happens much in the same way in which the classical arithmetic criterion
for 1-lattices allows one to determine the three distinct cubic centerings P, F, I
that pertain to the same cubic holohedry.

5 Appendix B shows through an example how such computations are actually
carried out.
6 We recall that for simple lattices these two classi®cations are equivalent (see
for instance Janssen, 1973, p. 120).
7 Also the description of the symmetry hierarchies that exist among the 29
different types of 3D monoatomic 2-lattices, and the ensuing account of all the
possibilities for symmetry breaking in these structures, constitute interesting
knowledge for modeling phase transitions in crystalline materials; see Fadda &
Zanzotto (2001) for detailed information on the symmetry groups of 2-lattices
and their inclusion relations up to ÿ3;1-conjugacy (partial ordering of the 29
conjugacy classes).
8 `Regular point systems' is the term used in the literature for the special
multilattices on which the space-group action is transitive, so that they are
constituted by a single orbit [see Hilbert & Cohn-Vossen (1932), Engel (1986),
Dolbilin et al. (1998)]. In general, however, a multilattice is not a single
crystallographic orbit, but a union of ®nitely many orbits with the same
translational invariance, and does not coincide with a single orbit even when
all of its atoms belong to a single species. See x5 for more details, and for
examples taken from the allotropic structures of the elements. As recalled
above, general multilattices are also termed `multiregular point systems'
(Dolbilin et al., 1998), or `ideal crystals' (Engel, 1986, p. 2), when it is useful to
stress the fact that they are not single orbits. It is well known that, besides 3D
periodicity, the characteristic feature of a regular point system is that it `looks
the same' if seen from every one of its points (see Engel, 1986). This is not true
for multiregular point systems, which `look different' in ®nitely many ways
when seen from their own points.
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orbits' stabilizers. The corresponding classes of equivalent

orbits are called `lattice complexes' by Fischer & Koch, or

`orbit types' by Engel. A referee pointed out to us that an

explicit count based on Fischer & Koch's method gives the

same 29 types of monoatomic 2-lattices as the arithmetic

method discussed here; therefore the two criteria turn out, a

posteriori, to be equivalent for these simplest regular point

systems.9 As, a priori, the two classi®cation principles involve

groups of a rather different nature, the equivalence of the two

classi®cations gives a remarkable link between the arithmetic

framework and the classi®cation based on lattice complexes,

which is a subject classically studied in crystallography. One

conjectures that the two criteria be actually equivalent for all

the single-orbit structures, but at present we can offer no

general conclusion about this question. It should be stressed,

however, that the method by Fischer & Koch originated as a

classi®cation of (single) orbits, and it is not obvious how to

extend it to more complex crystal structures; the arithmetic

criterion, on the other hand, classi®es general crystals. The

examples of 4-lattices discussed in x5 show that this method

gives a group-theoretical foothold for classifying periodic

structures when the space-group classi®cation fails to do so,

and also the method by Fischer & Koch appears inadequate

(at least as currently presented in the literature). This is one

main reason for pursuing the investigation of the arithmetic

framework for multilattice symmetry, which, moreover, seems

readily amenable to computerized calculation procedures.10

2. Three-dimensional 2-lattices

As mentioned in the Introduction, one goal of this paper is to

illustrate how to perform the systematic analysis of the

arithmetic symmetry of multilattices in a manageable case,

that is, for monoatomic 2-lattices. In order to keep the treat-

ment self-contained, we recall some of the notions discussed

by Pitteri & Zanzotto (1998) and Fadda & Zanzotto (2000),

for brevity referred to hereafter as I and II, where further

details can be found.

2.1. Descriptors and configuration spaces of 2-lattices

We use the traditional Grassmann notation for the points

and translation vectors in the three-dimensional real af®ne

space A3, whose origin is denoted by O.

A 2-lattice is an in®nite and discrete subsetM of points in

A3, coinciding with the union of two `af®ne simple lattices'

(also called 1-lattices),

M�M�ea; p� � O� L�ea�
� 	[

O� p� L�ea�
� 	

: �1�

Here L�ea� denotes a simple vector lattice in the translation

space R3 of A3, generated by the basis ea, a = 1, 2, 3,

L�ea� � v 2 R3 : v � v a ea; v a 2 Z� 	
: �2�

In (2) and hereafter, the summation convention over repeated

indices will be understood.

Given a 2-lattice M in A3, in this paper the origin O is

always chosen on a point ofM, as is implicit in (1). The vector

lattice L�ea� appearing in (2) is called the skeletal lattice ofM,

which gives the 3D periodicity of the 2-latticeM; the basis ea

and the corresponding unit cell are called the skeletal basis

and unit cell ofM. The vector

p � paea �3�
in (1) is called the `shift vector' or the `shift' ofM: it gives the

separation of the two simple lattices constitutingM. We call

the vectors �e1; e2; e3; p) the descriptors ofM. They satisfy the

conditions

e1 � e2 � e3 6� 0 and p 6� l a ea; for l a 2 Z; a � 1; 2; 3;

�4�
which guarantee that the two simple lattices constituting M
are three-dimensional and not coincident. We often denote

the 2-lattice descriptors by """�, � � 1; 2; 3; 4,

"""a � ea; a � 1; 2; 3; and """4 � p; �5�
and, accordingly, in (1) we writeM�M�"""��.

The set of all 4-tuples of vectors of R4 satisfying conditions

(4) is denoted by D3;1, and is called the space of descriptors, or

the con®guration space of 3D 2-lattices. One studies the

structure of this space in order to study the kinematics of

deformable 2-lattices.

Let Q4 denote the ten-dimensional vector space of all

symmetric 4 � 4 real matrices; it is useful to extend to multi-

lattices the usual notion of lattice metric (or `Gram matrix'),

and de®ne the space Q3;1 � Q4 of the 2-lattice metrics K such

that

K � �K���; K�� � K�� � """� � """� for """� 2 D3;1 �6�
��; � � 1; 2; 3; 4�, where """� satisfy conditions (3)±(5). An

element K 2 Q3;1 is a 4 � 4 symmetric matrix which is only

positive semi-de®nite because the vectors """� are not linearly

independent in R3. However, not all the symmetric positive

semi-de®nite matrices belong toQ3;1 because, by de®nition, """�
in (6) must also satisfy conditions (3)±(5). If we de®ne the

usual dual basis

ea � Kabeb �KabKbc � �a
c� �7�

of ea, and express the shift p as [see (3)]

p � paea � paea; �8�
we see that the explicit form of a 2-lattice metric K 2 Q3;1

de®ned in (6) is the following:

9 We remark that here we classify monoatomic 2-lattices independently of
Fischer & Koch's principle: our procedure is not a new way of retrieving their
results. Only a posteriori, through a comparison of the explicit list of the
distinct types obtained from the two methods, does one ®nd that they are
equivalent for the speci®c case of monoatomic 2-lattices.
10 To summarize, the method by Fischer & Koch classi®es, by de®nition,
structures that are regular point systems, while the arithmetic criterion
classi®es any multiregular point systems. It is an open question whether these
two independent criteria coincide for regular point systems. This paper shows
that the two classi®cations do coincide for regular point systems with two
points in their unit cell.



�K��� � �K��� �
Kab Ka4 � pa � Kabpb

Ka4 K44 � Kabpapb � papa

0@ 1A; �9�
where, by (4), p1; p2; p3 are not simultaneously in Z. Clearly,

Kab = ea � eb (a; b = 1, 2, 3) is but the metric of the skeletal

latticeL�ea�. Also, by (3), (7), (8), K44 = kpk2 in (9) is a rational

function of the nine other independent entries of K; thus the

spaceQ3;1 is a nine-dimensional non-linear submanifold of the

ten-dimensional vector space Q4.

It is not dif®cult to see that, for any two sets of descriptors

"""� and """0� as in (4)±(6), we have

K0 � K , """0� � Q"""� for some Q 2 O�3�: �10�

Since we are often interested in properties that are indepen-

dent of the orientation of a multilattice in A3, then owing to

(10), also the space of 2-lattice metricsQ3;1 is referred to as the

`con®guration space' of 3D 2-lattices.

Remark. The 2-lattices considered so far are, implicitly,

`monoatomic', as mentioned in footnote 3, in that all their

points are physically indistinguishable. However, the consid-

erations above all extend to the `diatomic' case, in which the

two simple lattices constituting the 2-lattice in (1) are made of

atoms belonging to two different species. The only change

necessary in what follows is that, in the diatomic case, the

variable � de®ned in formula (16) below can only have the

value 1, rather than �1 as in the monoatomic case. See also

point (5) in x4 below and x8 in II for further comments on the

classi®cation of diatomic lattices.

2.2. Essential descriptors of monoatomic 2-lattices

Certain descriptors """� of monoatomic 2-lattices actually

give a 1-lattice in A3 (see for instance Fig. 1 in I). Such """� are

called non-essential descriptors of 1-lattices, and will be

avoided hereafter as they give rise to various problems [see

Ericksen (1998) and Pitteri & Zanzotto (2001) for further

details]. This does not hamper our systematic investigation of

the arithmetic types of monoatomic 2-lattices, for no actual

2-lattice is missed if only essential descriptors are considered.

Explicitly, in the con®guration space D3;1, the non-essential

descriptors are as follows:

�e1; e2; e3; p� 2 D3;1 is non-essential, p � 1
2�

aea � t; �11�

where t 2 L�ea� and the numbers �a are

either �1; 1; 1� or a permutation of �1; 1; 0� or �1; 0; 0�
�12�

[also recall conditions (4)2 on the shift p].

In our analysis, we con®ne ourselves to the portions of the

con®guration spaces of 2-lattices that only contain essential

descriptors not satisfying (11)±(12), thus generating mono-

atomic 2-lattices which are not 1-lattices. Explicitly, we

consider

Dess
3;1 �

n
�ea; p� 2 D3;1 : p 6� 1

2 �
aea � t; �a as in (12)

o
� D3;1;

�13�
and

Qess
3;1 � K 2 Q3;1 : K�� � """� � """�; """� 2 Dess

3;1

� 	 � Q3;1: �14�
For brevity, also the spacesDess

3;1 andQess
3;1 are referred to as the

`con®guration spaces' of 2-lattices.

2.3. The global symmetry group of monoatomic 2-lattices and
its action on the configuration spaces

As discussed in I and by Pitteri & Zanzotto (2001), the

group of operations describing the general indeterminacy in

the choice of multilattice descriptors is the basis for the study

of their arithmetic classi®cation; this generalizes the classical

procedure used for simple lattices. The indeterminacy in the

choice of the essential descriptors of 2-lattices leads to

considering the following arithmetic `global symmetry' group

(see Pitteri, 1985),

ÿ3;1 <GL�4;Z�; �15�
constituted by the unimodular integral 4� 4 matrices with the

following structure: for a; b = 1, 2, 3,

� 2 ÿ3;1 , ��� �
mb

a

l 1

l 2

l 3

0 0 0 �

0BB@
1CCA; �16�

where �mb
a� is any matrix in GL�3;Z�, l b 2 Z, and � = �1

(recall the Remark at the end of x2.2).11

The structure of the matrices � 2 ÿ3;1 is justi®ed by

Proposition 3 in I, which we recall here for the 2-lattice case:

Proposition 1. Let M�"""�� be a monoatomic 2-lattice in an

essential description. Then �"""� are new essential descriptors for

M up to a translation [that is,M� �"""�� � M�"""�� � t, t 2 R3] if

and only if there exists a matrix � 2 ÿ3;1 such that

�"""� � ���"""� ; � 2 ÿ3;1; �17�
The matrix � 2 ÿ3;1 determines uniquely the new descriptors
�"""� and vice versa.12

Owing to (16) and (17), the new lattice basis and shift are

given explicitly by

�ea � mb
aeb; �p � � p� l aea; �18�

where �mb
a� 2 GL�3;Z�, l a 2 Z and � � �1.

Proposition 1 shows that the essential descriptors """� 2 Dess
3;1

of a 2-lattice transform by means of a matrix in ÿ3;1, and that

the changes of essential descriptors are in a one-to-one

correspondence with such matrices. For this reason, we refer
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11 For more general multilattices, with n atoms in their unit cells, the relevant
group is a subgroup of GL�n� 2;Z�; see I or x5 below.
12 Since the vectors """�, � = 1, 2, 3, 4, are not linearly independent, there are
in®nitely many 4 � 4 matrices relating them to the vectors �"""�. Proposition 1
states that, when """� and �"""� are essential, there is always one and only one such
matrix in the group ÿ3;1.
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to ÿ3;1 as the global symmetry group of monoatomic 2-lattices

in 3D.

A change of descriptors as in (17) induces, in obvious

notation, the following transformation of the multilattice

metric K in (6),

�K � �TK�; �19�
where, in general, �K 6� K.13 Formulae (17) and (19) give

natural actions of the group ÿ3;1 on the con®guration spaces

Dess
3;1 andQess

3;1; for instance, the orbit of a given K 2 Qess
3;1 under

ÿ3;1 is the set

�TK�;� 2 ÿ3;1

� 	 � Qess
3;1: �20�

Based on these actions the arithmetic symmetry of 2-lattices is

studied; regarding this, we explicitly recall that the action (19)

of ÿ3;1 on Qess
3;1 generalizes to 2-lattices the usual action

C 7! mTCm; C 2 C��Q3�; m 2 GL�3;Z�; �21�
considered in crystallography for classifying the arithmetic

symmetry of simple lattices (that is, 1-lattices). In (21), the

symbol C��Q3� indicates the set (a cone) of 3 � 3 positive

de®nite symmetric matrices (1-lattice metrics).

2.4. Lattice groups, point groups and arithmetic types of
2-lattices

As for 1-lattices, the arithmetic classi®cation of 2-lattice

symmetry is based on the analysis of the subgroups of ÿ3;1 that

act isometrically on some 2-lattice [or, equivalently, that

stabilize some 2-lattice metric under the action (19)], and that

are maximal for this property. Therefore, the main focus in

what follows is establishing the conjugacy properties of the

subgroups of matrices � 2 ÿ3;1 for which the equation

�TK� � K �22�
holds for some K 2 Qess

3;1; as we shall see, such groups are

necessarily ®nite.

To be precise, let """� 2 Dess
3;1 with metric K 2 Qess

3;1 be given;

we de®ne the lattice group ��"""�� of the 2-latticeM�"""��,
��"""��<ÿ3;1 <GL�4;Z�; �23�

as the subgroup of all the integral matrices � 2 ÿ3;1 such that

��"""�� � � 2 ÿ3;1 : ���"""� � Q"""�; Q 2 O�3�� 	
� � 2 ÿ3;1 : �TK� � K
� 	
� ��K�:

�24�

By (10), for """� 2 Dess
3;1 with metric K, the following holds:

�TK� � K , ���"""� � Q"""� for some Q 2 O�3�:
�25�

Thus, (24)2 above holds, and the lattice group ��"""�� is also

denoted ��K� as in (24)3, for it depends only on the metric K

of the descriptors """�. This also means that, given any """� 2 Dess
3;1,

��Q"""�� � K�"""�� for all Q 2 O�3�; �26�

that is, the lattice group is independent of the orientation of

the 2-lattice in A3.

By (24), under a change of descriptors �"""� = ���"""� for the

2-lattice M�"""�� as in (17), the lattice group transforms as

follows:

�����"""�� � �ÿ1��"""��� for all � 2 ÿ3;1: �27�

Proposition 1 and formula (27) state that any given 2-lattice

M�"""�� determines an entire conjugacy class of lattice groups

in ÿ3;1. This is completely analogous to the case of 1-lattices

and, as for the latter, we de®ne two 2-latticesM andM0 to be

of the same arithmetic type when their lattice groups are ÿ3;1-

conjugate. We also say that two metrics K and K0 (or two sets

of descriptors """� and """0�) are of the same arithmetic type when

their lattice groups are conjugate in ÿ3;1. This generates a

subdivision of Qess
3;1 into equivalence classes [the `strata' of the

action (19)], which are called the arithmetic types within Qess
3;1

(analogously for Dess
3;1). We shall thus determine and study the

properties of all the conjugacy classes of lattice groups in ÿ3;1

in order to obtain a description of the `arithmetic symmetry

types' of 2-lattices in 3D. An analog of the subdivision into

Bravais types that is classical for 3D simple lattices is produced

in this way.14

To ®nd the lattice groups in ÿ3;1, it will be more convenient

to analyze, rather than (22), the equations

Qea � mb
aeb; Qp � � p� l aea �28�

for �ea; p� 2 Dess
3;1, Q 2 O�3�, � � �1, l a 2 Z. By (5), (6), (16),

(18) and (25), conditions (28) are equivalent to (22).

Given a 2-lattice M�"""��, with """� � �ea; p�, the operations

Q 2 O�3� that solve (28)1 for some ea and m 2 GL�3;Z�
belong, by de®nition, to the (holohedral) point group P�ea� of

the skeletal lattice L�ea�; the skeletal lattice group L�ea�
collects the corresponding matrices m 2 GL�3;Z� (see I). The

operations Q 2 O�3� satisfying both the equations in (28)

belong by de®nition to the point group P�"""�� of the 2-lattice

M�"""��. In general, the skeletal point group P�ea� is thus larger

than the multilattice point group P�"""��, as is well known and,

as is easily seen since the operations in P�"""��, must also solve

equation (28)2 (see also x2.5).

We recall (see I) that the lattice group ��"""�� is isomorphic

to the point group P�"""�� of M�"""��, and is thus necessarily

®nite. However, ��"""�� carries more information than P�"""��:
indeed, unlike with the point group, given the group of

matrices ��"""�� it is possible to reconstruct uniquely the space

group of M�"""�� (see Proposition 5 in I). This, together with

the example in Appendix A of I, shows that the arithmetic

symmetry of multilattices gives in general a ®ner classi®cation

than their space-group symmetry.

13 As usual, �T denotes the transpose of any matrix �.

14 The classical 14 Bravais types in three dimensions, recalled in the
Introduction, are indeed obtained by considering the conjugacy classes of
lattice groups of simple lattices (`arithmetic holohedries') within GL�3;Z�.



2.5. The Bravais type of a multilattice; excess skeletal
symmetry

Given a 2-latticeM, its lattice group �<ÿ3;1 determines a

group C� <GL�3;Z�, which is the subgroup of GL�3;Z�
containing the matrices m in the upper left corner of the

matrices � 2 � [see formula (16)]. The group C� determines

the arithmetic class ofM (and of �); this in turn determines

uniquely a minimal lattice group L� containing C�.15 The

group L� selects a Bravais lattice type, which we de®ne to be

`the Bravais type' of M and of its lattice group �.16 It is

important to remark that some of the 2-lattices whose lattice

group is � may have skeletal lattice (2) whose lattice group

L0<GL�3;Z� is larger than L�. However, this does not

increase the multilattice symmetry �, and for this reason in

these cases we speak of `excess skeletal symmetry'. It can be

seen that excess skeletal symmetry occurs only on lower-

dimensional submanifolds of I��� which are not themselves

®xed sets of any lattice group �0 larger than �.17 These

submanifolds often appear in the solutions of equation (28)2,

and one must be aware of the fact that they do not contribute

to the description of the arithmetic types in the con®guration

spaces of multilattices; see Appendix B4 for an example.

3. Some lemmas useful in the analysis of 2-lattices

In this section, we give some results that establish a rapid

procedure for determining the arithmetic types of mono-

atomic 2-lattices (see Appendix A for proofs).

We are interested in describing `enough' (but not `too

many') groups of solutions to equation (22) for suitable

metrics K in Qess
3;1, or, equivalently, `enough' solutions to

equations (25) or (28) for suitable """� 2 Dess
3;1, with Q 2 O�3�

and � 2 ÿ3;1, that is, with � � �1, m 2 GL�3;Z�, l a 2 Z. In

fact, in order to establish the arithmetic types in Dess
3;1 or Qess

3;1,

we only need to determine enough solutions of (28) so as to

expose all the equivalence classes of lattice groups in ÿ3;1.

Lemmas 2 and 3 below tell us explicitly which �ea; p� need to

be tested in (28) in order to obtain the necessary information;

all other """� 2 Dess
3;1 produce conjugate lattice groups that do

not affect the determination of the arithmetic types.

The following lemma cuts in half the lattice group

computations deriving from equations (28). As ÿ1 �
diag�ÿ1;ÿ1;ÿ1; ÿ1� 2 ÿ3;1, necessarily all monoatomic

2-lattices are centrosymmetric, and since ÿ1 trivially solves

equation (22) for all K 2 Qess
3;1, we have:

Lemma 1. The lattice groups (24) of monoatomic 2-lattices all

contain the matrix ÿ1 2 ÿ3;1. Thus for all K 2 Qess
3;1, it follows

that

��K� � ���K� [ ÿ���K�; �29�

where ���K� is the subgroup of matrices � in ��K� such that

� � 1 [see (16)].

Because of this special property of 2-lattices, we only need

to determine explicitly the matrices in the subgroup ���K� of

any lattice group, that is, we need to check (25) or (28)2 only

for � � 1.18 Any solution �Q; l a� of (28)2 found for a given p

and � � 1 then generates another solution �ÿQ;ÿl a� for the

same p and � � ÿ1 [notice that, given p, Q solves (28)2 if and

only if ÿQ does].

Lemma 2. Let a basis ea be given; let """� � �~ea; p� and the

matrices � 2 ��~ea; p� be any solution of (28), and suppose

that ~ea � ~mb
aeb for some ~m 2 GL�3;Z�, i.e. let ea and ~ea give

the same skeletal lattice. Then the descriptors �~ea; p� and

�ea; p� generate the same 2-lattice in A3 up to a translation, so

that the lattice groups ��~ea; p� and ��ea; p� are ÿ3;1-conju-

gate.

This lemma and the independence (26) of the lattice group

from the orientation of a multilattice tell us that in order to

determine the arithmetic types in Dess
3;1 we only need to test

equation (28) for descriptors """� = �ea; p� such that ea belongs

to a pre-®xed set of 14 bases generating the skeletal lattices of

the 14 distinct Bravais types. When possible, the bases chosen

in our computations coincide with the `conventional' ones

used in International Tables for Crystallography (1996).19

Once a basis ea is chosen for the skeletal type of the 2-lattice

that is being investigated, equation (28)1 is solved through

classical computations that produce the group of integral

matrices leaving the skeletal simple lattice invariant. This

gives the skeletal lattice group L�ea� (see the end of x2.4) and,

correspondingly, the group of orthogonal operations consti-

tuting the skeletal point group P�ea� [see below formula (28)

and the example in formula (49)]. As these groups are known,

one then checks equation (28)2 for � � 1 and Q 2 P�ea�.
In principle, given a basis ea, one should still check in

equation (28)2 descriptors �ea; p� with a shift vector p variable

in an unbounded subset of R3, i.e. for all p except for the

exclusions in (13). However, the fact that we only need to

determine the lattice groups up to ÿ3;1-conjugacy restricts the

descriptors """� that need to be considered to the """� = �ea; p�

Acta Cryst. (2001). A57, 492±506 Fadda and Zanzotto � Arithmetic classification of crystal structures 497

research papers

15 Unlike with 1-lattices, multilattices can realize non-holohedral lattice groups
and point groups, that is, it can be C� 6� L� (see for instance type number 25
in Table 1).
16 In International Tables for Crystallography (1996), this de®nition is given
directly for the space groups; as our lattice group � determines the space
group, our de®nition is equivalent.
17 These submanifolds of I��� are not ®xed sets inQess

3;1 but their projections on
the subspace hK11;K12; . . . ;K33i ' C��Q3� are ®xed sets for the simple-lattice
action (21). As recalled in II, there is the prejudice that, physically, excess
skeletal symmetry should not be a stable feature of a multilattice (see for
instance Landau & Lifshitz, 1959, x130).

18 We notice that if an operation Q of the point group P�"""�� corresponds,
through equation (25) or (28), to a matrix � 2 ���"""��, then, with the choice
made in (1) for the origin O, the operation �Qj0� belongs to the space group
S�M�"""��� of the 2-latticeM�"""��. However, the operation ÿQ, corresponding
to the matrix ÿ� 2 ÿ���"""��, gives the af®ne operation �ÿQjp� 2 S�M�"""���,
which involves also a translation p. For instance, the fact that 2-lattices are
always centrosymmetric means that in their space groups there is always the
operation �ÿ1jp�.
19 For the centered types of skeletal lattices, International Tables for
Crystallography (1996) utilize a conventional non-unit cell that is not suitable
for the computations related to equation (28), which need an actual skeletal
basis.
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whose p varies only in a bounded domain in R3. This is due to

the following lemma [recall the de®nition (2) of L�ea�]:
Lemma 3. Given any �ea; ~p� 2 Dess

3;1, there exists a bounded

domain A�ea� � R3 such that

~p � Q p� t; �30�

where p 2 A�ea�, Q 2 P�ea� and t 2 L�ea�; the lattice group

��ea; ~p� is ÿ3;1-conjugate to the lattice group ��ea; p�. The

domainA�ea� can be chosen to be the `asymmetric unit' of the

(unique) space group that is symmorphic and realizes the

holohedry P�ea�.20

To summarize, Lemmas 2 and 3 tell us that, in order to ®nd

the ÿ3;1-conjugacy classes of the lattice groups arising from

equations (28), one only needs to consider the lattice groups

obtained from the analysis of (28) for descriptors """� � �ea; p�
such that: (a) the basis ea is any given basis for one of the 14

types of Bravais lattices; (b) the shift p is in the asymmetric

unit A�ea� of the holohedral symmorphic space group related

to the basis ea. The lattice groups of any descriptors not

satisfying properties (a) and (b) are necessarily conjugate to

some lattice group of descriptors that do, and consequently

the former do not add any information for the purposes of

determining the distinct arithmetic types of 2-lattices.

Owing to the next two propositions, we shall be able to

utilize some further information contained in International

Tables for Crystallography (1996):

Lemma 4. Given a basis ea and a shift vector p 2 A�ea�, the

descriptors """� � �ea; p� that solve (28)2 for Q 2 P�ea�, l a 2 Z
and � � 1, are those for which p belongs to a `special Wyckoff

position' in A�ea� whose site-symmetry contains Q.

Indeed, by de®nition, from the Wyckoff positions listed in

International Tables for Crystallography (1996), one only

obtains the elements of ���ea; p�. To ���ea; p� we must then

add all the elements of ÿ���ea; p�, as indicated by Lemma 1,

to obtain the full lattice group of �ea; p�.
Now, given a basis ea and the solutions m 2 L�ea� to

equation (28)1, we want to establish which lattice groups in

�<ÿ3;1, if any, have the Bravais type of ea, according to the

de®nition given in x2.5. For many p 2 A�ea�, the solutions Q

obtained from Lemma 4 are actually too few, that is, they give

a (non-holohedral) point group that pertains to a holohedry

smaller than P�ea�.21 The following corollary makes this more

precise, by indicating which special Wyckoff positions p give

lattice groups ��ea; p� whose Bravais type is exactly that of ea:

Corollary 1. Let a basis ea (and thus a Bravais type) be given,

and let """� � �ea; p� 2 Dess
3;1, with p 2 A�ea� and such that the

exclusions in (13) hold. The lattice groups ��ea; p� whose

Bravais type is that of ea are given by the solutions to (28)2

derived22 from the special Wyckoff positions in A�ea� whose

site-symmetry group has the following properties: either

(a) it has index 2 in P�ea� and it does not contain ÿ1; or

(b) it has index 4 in P�ea�, it does not contain ÿ1, and it

realizes, with ÿ1, a non-holohedral Laue group in P�ea�.23

In Appendix B, we consider an explicit example of how the

results above are used in the determination of the arithmetic

types of 2-lattices with a body-centered orthorhombic skeletal

type. We recall, as in footnote 19, that, for the centered

skeletal types, International Tables for Crystallography (1996)

utilize conventional cells that are not of unit volume. In these

cases, the listed `multiplicity' of a special Wyckoff position

does not coincide with the index of its site-symmetry group

within the point group, but is a multiple of the index through a

factor f that depends on the volume of the conventional cell

( f � 2; 2; 4, for base-, body- and face-centered lattices,

respectively).

4. The 29 arithmetic types of monoatomic 2-lattices

The analysis of the solutions to equations (28) based on the

results of the previous section shows that there exist 29

conjugacy classes of lattice groups in ÿ3;1, and thus 29 distinct

monoatomic 2-lattice types. In Table 1, we give the Bravais

type, the space group and the position of the extra atom in the

unit cell, for each of the 29 2-lattice types, indicating also any

Strukturberichte and examples of real materials known to

assume these crystal structures. We refer to Fadda & Zanzotto

(2001) for the illustration of their cells.

Some comments may be useful regarding the above result.

(1) From Table 1, one can easily establish the number of

free parameters pertaining to each 2-lattice type, a generic

change of which does not affect the arithmetic symmetry. This

allows one to derive the sets of `symmetry-preserving defor-

mations' that are possible for each type.

(2) Given a simple lattice, at each point of which is placed

an atom, there may or may not correspondingly exist (a

number of) distinct types of monoatomic 2-lattices. These

correspond to all the inequivalent ways of putting an extra

atom in the unit cell of the given simple lattice. For instance,

there are four 2-lattice types, numbered (25) to (28) in Table 1,

that have hexagonal Bravais type; types number (26)±(28)

originate from three inequivalent ways of placing extra

hexagonal nets of points in a hexagonal 1-lattice so as to

maintain a sixfold axis [type (27), for the correct `c=a ratio',

gives the well known h.c.p. structure]. The 2-lattice type

20 This is the space group of the af®ne 1-lattice O� L�ea�, whose point group
is isomorphic to the holohedry P�ea� (see x2.4). Of course there are 14 such
groups (one for each Bravais type) with their corresponding asymmetric units,
indicated explicitly in International Tables for Crystallography (1996). That the
domain A�ea� in this lemma is bounded comes from the fact that A�ea� is a
special case of a `fundamental domain' for a space-group action on R3. See
Appendix B for an example.
21 Indeed, only `a few' of the positions p in A�ea� give the correct Bravais type
(see Corollary 1 below). The other positions produce smaller lattice groups in
ÿ3;1, for which ea is a cell having excess symmetry; such positions are
consequently not relevant. An example is given in Appendix B4.

22 Recall the comment below Lemma 4.
23 Hence, in the cubic case the site symmetry must contain four threefold
operations; in the tetragonal case, it must contain a fourfold operation; in the
hexagonal case it must either contain a sixfold operation or a threefold
operation; in the rhombohedral case, it must contain a threefold operation.
Alternative (a) in Corollary 1 gives the holohedral 2-lattices; alternative (b)
gives the non-holohedral 2-lattices, and only occurs once; see point (2) in x4.



number 25, on the other hand, is produced by placing the extra

hexagonal net within the original lattice in such a way that the

sixfold axis is no longer present in the resulting structure. This

2-lattice type is non-holohedral, as it realizes the class �3m in

the holohedry 6=m 2=m 2=m; it is a 2-lattice of trigonal

class with a hexagonal Bravais type. This is the only non-holo-

hedral type among the 29, falling into case (b) of Corollary 1,

applied to the Wyckoff position 4�h� of the space group

P 6=m 2=m 2=m. We show the hexagonal cells of these four

2-lattice types in Fig. 1. Another example worth mentioning is,

for instance, the 2-lattice type number (29), which is the only

one that has cubic symmetry. The skeleton is face-centered

cubic with the extra atom placed at coordinate � 1
4 ;

1
4 ;

1
4 � in the

conventional f.c.c. cell; the further atomic positions in the

conventional cell, which are obtained, as usual, through the

face-centering vectors, are � 1
4 ;

3
4 ;

3
4 �, � 3

4 ;
3
4 ;

1
4 � and � 3

4 ;
1
4 ;

3
4 �. The

resulting monoatomic 2-lattice gives the structure of diamond,

well known in crystallography. For the two other cubic Bravais

types (primitive and body-centered), no 2-lattice type exists.

Indeed, no shift vectors can solve equation (28)2 with cubic

lattice groups in ÿ3;1: any 2-lattice with a primitive or a body-

centered cubic skeleton exhibits excess skeletal symmetry.

(3) About 270 crystalline allotropes of the elements have

been reported in the literature (see Table 1 for some refer-

ences). Not all the 29 distinct 2-lattice types that we list are

observed in nature (the same is true for the 14 Bravais types of

simple lattices, only ®ve of which are actually observed in the

elements). Our list does, however, include all the eight

2-lattice crystal structures observed in the elements so far.

These are given by the ®ve Strukturberichte that are mono-

atomic 2-lattices,24 plus two other 2-lattice con®gurations not

included in the Strukturberichte (observed in Pu, O and Bi);

the 2-lattice structure proposed by Boyer et al. (1991) as a low-

energy metastable form of Si, named `bct5' (body-centered

tetragonal with a ®vefold coordination), is also accounted for

(see Table 1 for details and references).

(4) Relevant information for the theory of phase transitions

in complex crystalline structures is obtained from the knowl-

edge of the symmetry hierarchies (group±subgroup relations

and partial ordering of the conjugacy classes in ÿ3;1), giving all

the possibilities for symmetry breaking and transformation

twinning that exist for monoatomic 2-lattices. We establish this

in Fadda & Zanzotto (2001); the analogous information for

1-lattices can be found in Zanzotto (1996) or Pitteri &

Zanzotto (2001). There is also the problem of `merging' the

descriptions of the kinematics of deformable 2-lattices with

that of 1-lattices, which we have kept distinct so far by

considering only the `essential part' Dess
3;1 of the space D3;1 (see

x2.2).25

(5) The results obtained in this paper about the arithmetic

types of monoatomic 2-lattices in 3D carry through to the

diatomic case, provided we only consider matrices � with

� � 1, rather than � � �1, in (15)±(16) and in all the ensuing

lattice groups. Remark, however, that this is not suf®cient to

classify completely the arithmetic types of diatomic 2-lattices.

The reason is that the `non-essential' positions of the shift p

when """� 2 D3;1\Dess
3;1 cannot be excluded in the diatomic case,

as they give rise to admissible diatomic 2-lattices, which also

need an appropriate analysis.

5. Examples of monoatomic 4-lattices

The previous analysis regards the simplest case of monoatomic

2-lattices, for which we give the complete arithmetic classi®-

cation. A systematic study of more complex structures proves

computationally challenging, although in principle the proce-

dure in its broad lines is the same as the one for 2-lattices. In

this section, we give some examples to show how the arith-

metic criterion is applied to 4-lattices. This is especially

interesting because n-lattices, unlike 2-lattices, are not in

general constituted by a single crystallographic orbit (they are

multiregular point systems and not regular point systems in

the af®ne space ± see footnote 8). This case shows how the

arithmetic criterion treats structures that cannot immediately

be analyzed by means of the lattice complexes by Fischer &

Koch (Koch & Fischer, 1975; Fischer & Koch, 1996) (recall

x1.3).

We refer to I for the notation and general concepts

regarding the arithmetic symmetry of n-lattices. The reader

can derive most of such notions from those given in x2 for the

case n � 2, by extending the number of shift vectors to three.

This is because, as in (1), we conventionally assume a lattice

point to coincide with the origin of the af®ne space, so that

three vectors are needed to give the positions of the three

further points in the unit cell of a 4-lattice. So, for the latter,

the multilattice descriptors in (5) are given by the vectors

"""�; � � 1; . . . ; 6,
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Figure 1
The four arithmetic types of monoatomic 2-lattices with hexagonal
Bravais type. The numbering is as in Table 1. Type number 27 gives the
h.c.p. structure (A3).

24 Out of the roughly one hundred Strukturberichte usually considered (see
Strukturberichte, 1913±1940), 27 are monoatomic and, among the latter, six are
1-lattices and ®ve, which are all included in our list of 29, are 2-lattices. The
latter comprise for instance the well known structures of �-U, of diamond, of
the h.c.p. metals etc.; see Table 1.
25 This is an interesting point because, as is well known, many crystalline
materials undergo phase transitions from 1- to 2-lattice structures and vice
versa, such as the h.c.p.$ b.c.c. or h.c.p.$ f.c.c. transitions (see for instance
Nishiyama et al., 1978).
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"""a � ea; a � 1; 2; 3; and """3�i � pi; i � 1; 2; 3: �31�
A main point that needs to be speci®ed, for a general n,

regards the structure of the arithmetic group that is at the

basis of the classi®cation criterion, which is given in (16) for

n � 2. For 4-lattices, this group, which is denoted by ÿ3;3, is the

subgroup of GL�6;Z� constituted by the unimodular integral

6 � 6 matrices having the following structure (see I, or Pitteri,

1985): for a; b; i; j = 1, 2, 3,

� 2 ÿ3;3 , ����� �
mb

a l b
i

0 � j
i

 !
; �32�

where �mb
a� is any matrix in GL�3;Z�, l b

i are arbitrary integers

and � = �� j
i � is a 3 � 3 matrix belonging to the ®nite non-

commutative group of matrices generated by the permutation

matrices26 of the set f1; 2; 3g and by the three 3 � 3 matrices

obtained from the identity by replacing one of its rows by a

row of ÿ1's, for instance,

ÿ1 ÿ1 ÿ1

0 1 0

0 0 1

0@ 1A �33�

etc. The submatrices � j
i in (32) generated in this way form a

representation, by means of 24 suitable 3 � 3 matrices, of the

group S4 of the permutations of four objects. Any such matrix

Table 1
The 29 arithmetic types of monoatomic 2-lattices in three dimensions.

Examples of elemental crystals are taken from Donohue (1982), CRC Handbook of Chemistry and Physics (2000), Pearson (1958), Smithells (1949), Villars &
Calvert (1991) and Boyer et al. (1991). Representation of the cells and a description of the lattice groups and their inclusion relations are given in Fadda &
Zanzotto (2001).

Bravais type No.

Coordinates of the shift vector p
in the conventional cell used in
International Tables for Crystal-
lography (1996) Space group Examples and Strukturberichte

Triclinic 1 x; y; z P�1

Primitive monoclinic 2 x; 1
2 ; z P121=m1

3 x; 0; z P12=m1

4 0; y; 1
2 P12=c1

5 0; y; 0 P12=m1

Base-centered monoclinic 6 x; 0; z C12=m1 �-O, �-Bi

7 0; y; 1
2 C12=c1

8 0; y; 0 C12=m1

Primitive orthorhombic 9 1
2 ;

1
2 ; z P21=m21=m2=n

10 1
2 ; 0; z P21=m2=m2=a

11 0; 0; z P2=m2=m2=m

Base-centered orthorhombic 12 0; 1
2 ; z C2=m2=m2=a

13 0; 0; z C2=m2=m2=m

14 0; y; 1
2 C2=m2=c21=m �-U, �0-Ce, 
-Am, �0-Tb, �0-Dy; A20

15 0; y; 0 C2=m2=m2=m

Face-centered orthorhombic 16 0; 0; z F2=m2=m2=m

17 1
4 ;

1
4 ;

1
4 F2=d2=d2=d 
-Pu

Body-centered orthorhombic 18 0; 1
2 ; z I21=m21=m21=a

19 0; 0; z I2=m2=m2=m

Primitive tetragonal 20 1
2 ;

1
2 ; z P4=n21=m2=m

21 0; 0; z P4=m2=m2=m

Body-centered tetragonal 22 0; 1
2 ;

1
4 I41=a2=m2=d �-Sn, �-Si, �-Ge; A5

23 0; 0; z I4=m2=m2=m bct5 Si

Rhombohedral 24 x; x; x R�32=m C-rh. graphite, �-As, �-Bi, �-Sb, �-O; A7

Hexagonal 25 2
3 ;

1
3 ; z P�32=m1

26 0; 0; z P6=m2=m2=m

27 2
3 ;

1
3 ;

1
2 P63=m2=m2=c �-Mg, �-Ti, �-Zn, etc.; A3 (h.c.p.)

28 2
3 ;

1
3 ; 0 P6=m2=m2=m

Face-centered cubic 29 1
4 ;

1
4 ;

1
4 F41=d�32=m C-diamond, �-Sn, �-Si, �-Ge, �0-Se; A4

26 The �� � permutation matrix � of a permutationf of f1; . . . ; �g is de®ned as
usual by � j

i rj � rf �i� for any numbers r1; . . . ; r�; so the entries of the matrix � j
i

are all 0, except in the f �i�th row of the ith column where they are 1.



� j
i is either a permutation matrix or a permutation matrix, one

of whose rows is substituted by a row of ÿ1's.

Now, let us consider some examples of 4-lattice structures.

In the appropriate range of temperature and pressure, the

following three 4-lattices, described respectively by three sets

of descriptors ~"""�, "̂""� and �"""� , � � 1; . . . ; 6, are observed,

respectively, the ®rst two in C, and the third one in La [see for

instance Donohue (1982), where also ®gures can be found].

(a) Hexagonal diamond structure:27 ~"""� � �ea; ~pi�, with

~p1 � 1
3

2
3

1
2

ÿ �
; ~p2 � 1

3
2
3 z

ÿ �
; ~p3 � 00z� 1

2

ÿ �
: �34�

(b) Hexagonal graphite structure (A9): "̂""� � �ea; p̂i�, with

p̂1 � 00 1
2

ÿ �
; p̂2 � 2

3
1
3 0

ÿ �
; p̂3 � 1

3
2
3

1
2

ÿ �
: �35�

(c) �-La structure (A30): �"""� � �ea; �pi�, with

�p1 � 00 1
2

ÿ �
; �p2 � 1

3
2
3

1
4

ÿ �
; �p3 � 2

3
1
3

3
4

ÿ �
: �36�

In all the above structures, the three shift vectors pi are

given by means of their coordinates with respect to a standard

hexagonal basis ea, with e3 parallel to the sixfold axis and

orthogonal to the plane of e1 and e2, which are spaced 2�=3

apart. These three hexagonal 4-lattices share the same space

group P63=mmc and the hexagonal holohedry 6=mmm (which,

incidentally, are the space group and holohedry of the h.c.p.

structure).

Now, structure (a) is a single orbit, belonging to the lattice

complex that derives from the Wyckoff position 4�f � of the

space group P63=mmc. Structure (b) does not belong to any

lattice complex, and indeed is the union of two crystal-

lographic orbits, obtained from the Wyckoff positions 2�b� and

2�d� of P63=mmc. Structure (c), too, does not belong to any

lattice complex; it is again obtained as the union of two orbits,

2�a� and 2�c�, of the group P63=mmc (see Donohue, 1982, for

further details).

It is not immediately clear how the existing classi®cation

criteria are to be applied to the above three structures. Fischer

& Koch's list of lattice complexes is only meant to capture

con®guration (a). The other two structures are unions of two

orbits (multiregular point systems), and therefore are not in

the list of lattice complexes; each constituent orbit does

appear in that list, but there is no accepted criterion in the

literature to say when two unions of orbits are to be consid-

ered `essentially' identical (or distinct). Some factors inter-

vene to complicate the matter when lattice complexes are used

in the attempt to investigate these structures. For instance, it

can be seen that the orbits 2�a� and 2�b� of P63=mmc belong to

the same lattice complex with space group P6=mmm, while

2�c� and 2�d� belong to the same lattice complex pertaining to

P63=mmc.28 So the two distinct 4-lattices (b) and (c) are

obtained respectively as unions of the same two structures

(with distinct space groups) in different relative positions. It is

not immediately obvious to see how the classi®cation of orbits

in lattice complexes will produce a classi®cation of multi-

regular point systems.

The arithmetic criterion, on the other hand, gives a

straightforward group-theoretical basis for treating the above

three structures on the same footing, and to check in which

way they are `essentially' different. Indeed, the 4-lattices (a),

(b) and (c) above are found to have symmetry groups

belonging to distinct conjugacy classes of the arithmetic group

ÿ3;3 de®ned in (32).29

In order to show this, we consider the lattice groups �� ~"""�,
��"̂""� and �� �"""�, of the 4-lattices above; these are the ®nite

subgroups of ÿ3;3 obtained by solving equations (25) or (28)

generalized to the case n = 4 [see also equations (45) or (47) in

I],

Qea � mb
aeb; Qpi � � j

ipj � l a
i ea: �37�

To check that the three resulting lattice groups (which are all

isomorphic to the hexagonal holohedry 6=mmm) are not

conjugate in ÿ3;3, it is not necessary to list all their elements; it

is enough to give the matrices � as in (32) that correspond,

through equation (37) considered for the sets of descriptors

(34), (35) and (36), to the central inversion �1 and to the sixfold

operation 6� belonging to the hexagonal holohedry 6=mmm.

Indeed, if the lattice groups were conjugate in ÿ3;3, the

� representatives of �1 would necessarily correspond to each

other in the conjugacy, and likewise for the � representatives

of 6� (with the same matrix in ÿ3;3 to perform the conjugacy).

A calculation based on (37) gives, in obvious notation, the

matrices ~��1, �̂�1, ���1 and ~�6� , �̂6� , ��6� , which all belong to ÿ3;3,

as follows:

~��1 �

ÿ1 0 0

0 ÿ1 0

0 0 ÿ1

0 0 0

0 0 0

ÿ1 0 ÿ1

0

0 0 ÿ1

ÿ1 ÿ1 ÿ1

1 0 0

0BBBBB@

1CCCCCA; �38�

�̂�1 �

ÿ1 0 0

0 ÿ1 0

0 0 ÿ1

0 ÿ1 ÿ1

0 ÿ1 ÿ1

0 0 0

0

ÿ1 ÿ1 ÿ1

0 0 1

0 1 0

0BBBBB@

1CCCCCA; �39�
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27 In the literature, it is not customary to describe the structures (a) and (b)
with the origin on a lattice point as we do. The coordinates of the four atoms in
their conventional cell are usually given as follows: � 1

3
2
3 z� � 2

3
1
3 z� 1

2 � � 1
3

2
3 �z�

� 1
3

2
3 �z� 1

2 � for structure (a); �00 1
4 � �00 3

4 � � 2
3

1
3

1
4 � � 1

3
2
3

3
4 � for structure (b).

28 The orbits 2�a� and 2�b� of P63=mmc actually give the same primitive
hexagonal 1-lattice, while 2�c� and 2�d� give the same 2-lattice (the h.c.p.
structure). We notice, however, that 2�a� and 2�b� do not belong to the same
Wyckoff set of P63=mmc; they only are equivalent when considered in the
same lattice complex of P6=mmm.

29 This happens in the same way in which, for instance, the primitive face-
centered and body-centered cubic structures are said to belong to distinct
1-lattice (Bravais) types, because their symmetry groups determine distinct
`arithmetic' conjugacy classes in GL�3;Z�. Exactly as the arithmetic criterion
produces the 14 Bravais types of 1-lattices (and the 29 types of 2-lattices in
Table 1), it can also produce all the distinct types of 4-lattices that are possible,
and not only the three considered here.
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���1 �

ÿ1 0 0

0 ÿ1 0

0 0 ÿ1

0 ÿ1 ÿ1

0 ÿ1 ÿ1

ÿ1 ÿ1 ÿ1

0

1 0 0

0 0 1

0 1 0

0BBBBB@

1CCCCCA; �40�

~�6� �

1 ÿ1 0

1 0 0

0 0 ÿ1

0 0 0

1 1 0

1 0 1

0

ÿ1 ÿ1 ÿ1

0 0 1

0 1 0

0BBBBB@

1CCCCCA; �41�

�̂6� �

1 ÿ1 0

1 0 0

0 0 1

0 0 ÿ1

0 0 0

1 0 1

0

ÿ1 ÿ1 ÿ1

0 0 1

0 1 0

0BBBBB@

1CCCCCA; �42�

��6� �

1 ÿ1 0

1 0 0

0 0 1

0 ÿ1 0

0 0 0

1 0 1

0

ÿ1 ÿ1 ÿ1

0 0 1

0 1 0

0BBBBB@

1CCCCCA: �43�

Now, it can be veri®ed that imposing the necessary condi-

tions for conjugacy of the two groups �� �"""� and ��"̂""�,
��6�� � ��̂6� ; ���1� � ��̂�1; �44�

with � 2 ÿ3;3, leads to a contradiction: no such � can do the

job. Likewise with the conjugacy conditions for the two lattice

groups ��"̂""� and �� ~"""�, or with the two groups �� ~"""� and �� �"""�.
Therefore, �� �"""�, ��"̂""� and �� ~"""� belong to three distinct

conjugacy classes in ÿ3;3, and for this reason the three struc-

tures (a), (b) and (c) above belong to three distinct arithmetic

types of 4-lattices.30

6. Conclusions

An arithmetic criterion was proposed in I for studying

multilattice symmetry: it arose in earlier works on phase

transitions in crystalline solids as the natural tool for

describing the symmetry properties and symmetry changes

that can occur in deformable crystals, and for determining the

correct invariance of their constitutive functions [see, for

instance, the literature quoted in x1.1, and also James (1987),

Bhattacharya et al. (1993) and Ericksen (1997, 1998, 1999)].

This method also allows for a detailed classi®cation of crystal

structures with any number of atoms in their unit cell.

In this paper, we have investigated systematically the

arithmetic symmetry of multilattices in the simplest case, that

is, tridimensional monoatomic 2-lattices, determining their 29

distinct arithmetic types. This contributes to our under-

standing of the kinematics of complex crystalline materials,

and helps establish a comprehensive background for the

precise modeling of their behavior. The analysis can be

adapted to the case of general n-lattice structures with n> 2.

Like 1-lattices, monoatomic 2-lattices are all constituted by

a single crystallographic orbit (they are regular point systems

in the af®ne space ± see footnote 8), and are therefore clas-

si®ed also by the well known criterion by Fischer & Koch

(Koch & Fischer, 1975; Fischer & Koch, 1996); see also

Hermann (1935) and x8.5 in Engel (1986). We ®nd that the

latter classi®cation and our own coincide, that is, the same 29

types of monoatomic 2-lattices are identi®ed by the two

independent methods.31 We conjecture that the two classi®-

cation criteria are indeed equivalent for all regular point

systems. Our work proves, a posteriori, that such equivalence

holds at least for monoatomic 2-lattices.

Regardless of this, we remark that only a minority of crystal

structures in nature are constituted by a single crystallographic

orbit [see the examples of 4-lattices in x5; see also Donohue

(1982) and Smithells (1949)]. There is thus a need for a general

classi®cation criterion. As explained in x5, it is not immedi-

ately clear how the classi®cation by Fischer & Koch can be

extended to general n-lattices (multiregular point systems).

The arithmetic criterion described in I, on the other hand, is by

its very de®nition applicable to any crystal structure, not only

to single orbits, nor only to monoatomic ones. If the above

conjecture is valid and there is equivalence of the two criteria

for all regular point systems, then the arithmetic criterion

constitutes a generalization to multiregular point systems of

the well established criterion for single orbits given by Fischer

& Koch.32

APPENDIX A
Some proofs

A1. Proof of Lemma 2

The descriptors �e; p� and �~e; p� in the statement of Lemma

2 generate (possibly up to an inessential translation) the same

2-lattice because L�ea� � L�~ea� and, thus, by (1),

M�ea; p� � M�~ea; p�; hence, by Proposition 1, ��ea; p� and

��~ea; p� are conjugate.

A2. Proof of Lemma 3

Given a skeletal basis ea, formula (30) states the de®ning

property of the `asymmetric unit', here denoted by A�ea�, of

30 Other examples are possible, for instance with 3-lattices; see Proposition 5
in I.

31 This means that the two criteria distinguish in the same manner the 2-lattice
structures that are `essentially' different from a physical point a view, that is,
which have different nearest-neighbor relations etc., grouping together only
the 2-lattices whose atomic landscape around each of their lattice points is
essentially the same. This is what happens, for instance, with the A-, B- or
C-centerings in base-centered orthorhombic 1-lattices; such centerings are
indeed `essentially' the same and are equivalent for both classi®cation
principles when applied to 1-lattice structures.
32 Fischer & Koch (Koch & Fischer, 1975; Fischer & Koch, 1996) determine
402 types of regular point systems (lattice complexes). As single orbits have a
maximal number of atoms in their unit translational cells, there is a ®nite
number of distinct types of regular point systems, also in the arithmetic sense.
This is not the case for multiregular point systems (multilattices), because, at
least mathematically, the latter can have any given number of points in their
unit cell.



the symmorphic holohedral space group of the simple skeletal

lattice L�ea� (see International Tables for Crystallography,

1996). Thus, for any �ea; p� and �ea; ~p� as in (30), since

L�Qea� � L�ea� by the de®nition of P�ea�, one has, from (1),

QM�ea; p� � M�Qea;Qp� � M�ea;Qp�
� M�ea;Qp� t� � M�ea; ~p�; �45�

hence ��ea; ~p� and ��ea; p� are ÿ3;1-conjugate by Proposition

1 and equation (27).

A3. Proof of Lemma 4

The statement in this lemma is true by the very de®nition of

a special Wyckoff position in International Tables for Crys-

tallography (1996), Vol. A; in this case, given the simple lattice

L�ea� and its symmorphic space group, a vector p 2 A�ea�
gives a special Wyckoff position with Q 2 P�ea� in its site-

symmetry group if Q is such that Qp and p differ by a vector in

L�ea�, as required by (28)2 for � � 1.

A4. Proof of Corollary 1

By Lemma 4, checking the special Wyckoff positions in

A�ea� gives solutions of (28)2 for � � 1. Now, ifÿ1 solves (28)2

for some �ea; p� and � � 1, then ÿp � p� l a ea, so that

necessarily p violates the exclusions (13). Therefore no special

Wyckoff position with a site-symmetry group containing ÿ1

can give allowed p's, the latter thus being positions in A�ea�
with site-symmetry groups of index at least 2 within the point

group.

Furthermore, by Lemma 1, we conclude that the point

groups of monoatomic 2-lattices always contain ÿ1, that is,

only Laue groups can be realized as point groups of mono-

atomic 2-lattice structures. As is well known, among the eleven

Laue point groups, seven are holohedral and four are non-

holohedral. The holohedral case is realized when the lattice

group � of the 2-lattice has elements � whose matrices m in

(16) form the full lattice group L�ea� of the given skeletal basis

ea [that is, the corresponding elements Q solving (28)2 form

the full skeletal holohedry P�ea�]. In this case, by considering

(28)2 for � � 1, we obtain a group of index exactly 2 in P�ea�;
for this reason, for any holohedral 2-lattices, we must only

consider the special Wyckoff positions as in case (a).

There is also the possibility that a 2-lattice be non-holo-

hedral; we must then check for cases in which (28)2 is not

solved by all the elements Q in P�ea�. As the non-holohedral

Laue groups are all of index 2 in their own holohedries, we

obtain the index condition in case (b) of Corollary 1. Then the

rest of the possibilities must be checked as mentioned in

footnote 20. It results that only for the symmorphic hexagonal

holohedral space group P6=m2=m2=m does one ®nd a

Wyckoff position 4�h� whose site symmetry is a non-holo-

hedral trigonal subgroup 3m (of index 4); this gives the

2-lattice type number 25, whose Laue point group is �3m.

APPENDIX B
Example: computation of the arithmetic types of
monoatomic 2-lattices with base-centered
orthorhombic skeleton

Here we give an explicit example of how the results in Table 1

are obtained, by determining explicitly the distinct arithmetic

types of monoatomic 2-lattices whose skeleton is of the base-

centered orthorhombic Bravais type. Four distinct types of

2-lattices arise with this skeleton, two of which share the same

space group.

B1. Skeletal basis, asymmetric unit and solutions to equations
(28)1

Let i; j; k be an orthonormal basis, and let the base-centered

orthorhombic basis ea be given by

e1 � 1
2 �ai� bj�; e2 � 1

2 �ÿai� bj�; e3 � ck; �46�
for some positive numbers a, b, c. The conventional cell basis is

a � ai, b � bj, c � ck. Our goal is the analysis of the solutions

�ea; p� of equations (28) when the skeletal basis ea is as above,

and the shift

p � xa� yb� zc �47�
belongs to the asymmetric unit A�ea� given by

A�ea� �
n

p � xa� yb� zc :

0 � x � 1
4 ; 0 � y � 1

2 ; 0 � z � 1
2

o
; �48�

which, from Lemma 3, is taken from the holohedral

symmorphic space group C2=m2=m2=m corresponding to the

Bravais type of ea (see International Tables for Crystal-

lography, 1996). Also recall the exclusions (13) for the non-

essential descriptors [notice that the latter are expressed in

terms of the actual lattice basis in (46) rather than the

conventional cell basis a, b, c].

The solutions to equations (28)1 are well known and give

the following skeletal point group P�ea� and lattice group

L�ea� with eight elements,

P�ea� � �1;�Q�
i ;�Q�

j ;�Q�
k

� 	
;

L�ea� � �1;�
0 ÿ1 0

ÿ1 0 0

0 0 ÿ1

0B@
1CA;

8><>:
�

0 1 0

1 0 0

0 0 ÿ1

0B@
1CA;� ÿ1 0 0

0 ÿ1 0

0 0 1

0B@
1CA
9>=>;; �49�

where Q!
v denotes the counter-clockwise rotation of angle !

about the direction v.

B2. Solutions to equations (28)2 for a = 1 and resulting lattice
groups

Among the solutions of (28)1 listed in (49), we must now

select those that also satisfy (28)2 for l a 2 Z and (some)

p 2 A�ea� in (48). By Corollary 1, we only need to check the
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special Wyckoff positions for the space group C2=m2=m2=m

that satisfy conditions (a) or (b) in the statement. In this case,

only case (a) is relevant because, as is well known, no non-

holohedral Laue subgroups are contained within the ortho-

rhombic holohedry mmm represented by the groups P�ea� and

L�ea� in (49). As the conventional cell in this case has volume

2, we only need to check the special Wyckoff positions of

C2=m2=m2=m whose listed multiplicity is 4.33 All the Wyckoff

positions of this space group, except for 4�e� and 4�f �, meet the

requirements of the lemmas and corollary in x3; taking Lemma

1 into account, such positions give the following orthorhombic

subgroups of ÿ3;1:

�oC;4l�e; p� � �1;�
ÿ1 0 0

0 ÿ1 0

0 0 1

ÿ1

ÿ1

0
0 0 0 1

0BB@
1CCA;

8>><>>:
�

0 ÿ1 0

ÿ1 0 0

0 0 1

ÿ1

ÿ1

0
0 0 0 1

0BB@
1CCA;�

0 1 0

1 0 0

0 0 1

0

0

0
0 0 0 1

0BB@
1CCA
9>>=>>;;

�oC;4k�e; p� � �1;�
ÿ1 0 0

0 ÿ1 0

0 0 1

0

0

0
0 0 0 1

0BB@
1CCA;

8>><>>:
�

0 ÿ1 0

ÿ1 0 0

0 0 1

0

0

0
0 0 0 1

0BB@
1CCA;�

0 1 0

1 0 0

0 0 1

0

0

0
0 0 0 1

0BB@
1CCA
9>>=>>;;

�oC;4j�e; p� � �1;�
0 1 0

1 0 0

0 0 ÿ1

0

0

ÿ1
0 0 0 1

0BB@
1CCA;

8>><>>:
�

1 0 0

0 1 0

0 0 ÿ1

0

0

ÿ1
0 0 0 1

0BB@
1CCA;�

0 1 0

1 0 0

0 0 1

0

0

0
0 0 0 1

0BB@
1CCA
9>>=>>;;

�oC;4i�e; p� � �1;�
0 1 0

1 0 0

0 0 ÿ1

0

0

0
0 0 0 1

0BB@
1CCA;

8>><>>:
�

1 0 0

0 1 0

0 0 ÿ1

0

0

0
0 0 0 1

0BB@
1CCA;�

0 1 0

1 0 0

0 0 1

0

0

0
0 0 0 1

0BB@
1CCA
9>>=>>;;

�oC;4h�e; p� � �1;�
0 ÿ1 0

ÿ1 0 0

0 0 ÿ1

0

0

ÿ1
0 0 0 1

0BB@
1CCA;

8>><>>:
�

1 0 0

0 1 0

0 0 ÿ1

0

0

ÿ1
0 0 0 1

0BB@
1CCA;�

0 ÿ1 0

ÿ1 0 0

0 0 1

0

0

0
0 0 0 1

0BB@
1CCA
9>>=>>;;

�oC;4g�e; p� � �1;�
0 ÿ1 0

ÿ1 0 0

0 0 ÿ1

0

0

0
0 0 0 1

0BB@
1CCA;

8>><>>:
�

1 0 0

0 1 0

0 0 ÿ1

0

0

0
0 0 0 1

0BB@
1CCA;�

0 ÿ1 0

ÿ1 0 0

0 0 1

0

0

0
0 0 0 1

0BB@
1CCA
9>>=>>;:

B3. Conjugacy classes of lattice groups and distinct arith-
metic types

Now, in order to establish the distinct arithmetic types of

monoatomic 2-lattices with a base-centered orthorhombic

skeleton, we need to study the ÿ3;1-conjugacy properties of the

six lattice groups found above. First of all, we notice that the

groups �oC;4j and �oC;4h are ÿ3;1-conjugate through the matrix

�1 �
0 ÿ1 0

1 0 0

0 0 1

0

0

0
0 0 0 1

0B@
1CA; �50�

and that, similarly, �oC;4i and �oC;4g are also conjugate

through �1. So we need no longer consider the groups �oC;4h

and �oC;4g. One can then proceed by using Proposition 5 in I,

which implies that 2-lattices with non-isomorphic space groups

cannot have ÿ3;1-conjugate lattice groups, while, on the

contrary, lattices with ÿ3;1-conjugate lattice groups necessarily

have isomorphic space groups. In our case, we ®nd the

following:

(a) 2-lattices with lattice group �oC;4j have space group

C2=m2=c21=m;

(b) 2-lattices with lattice group �oC;4i have space group

C2=m2=m2=m;

(c) 2-lattices with lattice group �oC;4k have space group

C2=m2=m2=m;

(d) 2-lattices with lattice group �oC;4l have space group

C2=m2=m2=a.

By the aforementioned proposition, we conclude that the

2-lattices belonging to cases (a), (b)±(c) and (d) have lattice

groups that are not conjugate in ÿ3;1, leaving the possibility

that the lattice groups �oC;4k and �oC;4i [cases (b) and (c)] may

be conjugate. A direct check on their conjugacy conditions

shows that they are not ÿ3;1-conjugate. This establishes the

existence of four distinct conjugacy classes of base-centered

orthorhombic lattice groups in ÿ3;1, whose representatives are

the groups mentioned in (a)±(d) above. Thus there exist four

distinct arithmetic types of monoatomic 2-lattices with a base-

33 As remarked at the end of x3, for centered lattices the multiplicity of a
special Wyckoff position given in International Tables for Crystallography
(1996) is a multiple of the index of the site-symmetry group; in this base-
centered case, the multiplicative factor is 2.



centered orthorhombic skeleton [see the types numbered

(12)±(15) in Table 1; type (14) gives the well known structure

of �-U]. Fig. 2 represents the conventional cells of these

2-lattice types.

As the distinct types (13) and (15) [cases (b) and (c) above]

share their space group, we have an instance here in which the

arithmetic criterion for the classi®cation of multilattice

symmetry is ®ner than the one given by the space groups. The

different arrangement of the atoms in the cells of structures

(13) and (15) is not captured by the space-group class.

B4. An example of Wyckoff position giving excess skeletal
symmetry

Here we give an example of how the higher-multiplicity

Wyckoff positions not included in cases (a) or (b) of Corol-

lary 1 lead to non-generic 2-lattices with excess skeletal

symmetry. We consider the Wyckoff position denoted 8�p� for

the same space group C2=m2=m2=m; this position has multi-

plicity 8 in the conventional double cell, i.e. its site-symmetry

group has index 4 in P�ea�. The corresponding lattice group is

��ea; p� � �1;�
1 0 0

0 1 0

0 0 ÿ1

0

0

0
0 0 0 1

0B@
1CA

8><>:
9>=>;; �51�

where p � xy0� � in the conventional cell. This is a primitive

monoclinic lattice group whose generic 2-lattice belongs to

type (3) in Table 1. The relation ke1k � ke2k that is satis®ed by

the base-centered orthorhombic basis ea in (46) is not enough

to increase to orthorhombic the symmetry of this 2-lattice, and

merely gives a case of excess (i.e. orthorhombic) skeletal

symmetry for a primitive monoclinic 2-lattice.34
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